If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-6w-80=0
a = 2; b = -6; c = -80;
Δ = b2-4ac
Δ = -62-4·2·(-80)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-26}{2*2}=\frac{-20}{4} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+26}{2*2}=\frac{32}{4} =8 $
| 7x(20)=140 | | .4(x+80)+1.2x=96 | | -5u-3=21u+60 | | (z-5)+(z-5)/2+z=100 | | G(x)=10-9×/× | | −2=−8u+6+(u+3) | | 8x^2-5=13 | | x-5=3x3 | | 220=428.48+0.92x | | 6x+6=5x+18 | | -2x+22=2x+6 | | 5x-6=2(2x-11) | | −2=−8u6+u3 | | -50v+12=-10v-25 | | 5x-12x+6=3x-34 | | 15-2x-x^2/x-4=0 | | 7t+11=77 | | -2y+8+7y=5 | | 2v+6=4(v+3) | | .4(x+80)+1.2+x=96 | | 2(9x-8)=-2 | | 2x-3(x-7)=24 | | 21v-45=-18v+5 | | (3w+8)=25 | | f(-4)=-4^2-4 | | -6=2/3n | | 3/4x-7=7/8x | | s+2=88 | | -5.5+c=12.48 | | 5(2+c)=45+5 | | 3/4x+3=1/4+1/4x | | 4^(12-3x)=64 |